High Sensitivity of Human Adipose Stem Cells to Differentiate into Myofibroblasts in the Presence of C. aspersa Egg Extract

نویسندگان

  • Natalio García-Honduvilla
  • Alberto Cifuentes
  • Miguel A Ortega
  • Arancha Delgado
  • Salvador González
  • Julia Bujan
  • Melchor Alvarez-Mon
چکیده

Introduction Regeneration therapy using adipose-derived stem cells (ADSC) has been proposed in the treatment of skin aging. Myofibroblast plays a relevant role in the organization of the extracellular matrix of the damaged skin. A natural extract was derived from the eggs of the mollusk Cryptomphalus aspersa (e-CAF) that seems to play a role on skin repair. We have investigated the potential effects of e-CAF in the differentiation of ADSC. Materials and methods ADSC were cultured in the absence or presence of e-CAF (50 and 200 μg/mL) for 24 hours and 7 days. Real-time cell assay, morphological, immunofluorescence, and RT-PCR techniques were used to evaluate the cell culture and expression of αSMA, collagen I, and tropoelastin. Results e-CAF induced significant reduction in the rate of growth of ADSC from 24 hours to 7 days of culture. e-CAF also induced bigger sizes, higher levels of cytoplasmic refringence and complexity, and a more polyhedral morphological changes in the cultured ADSC. The protein and mRNA expression of αSMA was significantly increased in e-CAF-cultured ADSC. Conclusion e-CAF promotes ADSC differentiation to myofibroblasts and should be considered as a potential agent for the prevention and treatment of skin aging.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Differentiation of Human Adipose Tissue-Derived Mesenchymal Stem Cells into Insulin Producing Cells Using Minimal Differentiation Factors

Background & Aims: Type 1 diabetes, or insulin-dependent diabetes, is an autoimmune disease in which pancreatic beta cells are destroyed by the immune system. Hitherto, no definite treatment has been found for this condition. Mesenchymal stem cells (MSCs) are multipotent, self-renewing cells that have the ability to differentiate into mesodermal tissues. This ability has attracted the attention...

متن کامل

Induction of Chondrogenic Differentiation of Human Adipose-Derived Stem Cells with TGF-β3 in Pellet Culture System

Objective Adult stem cells which are derived from different tissues, with their unique abilities to self-renew and differentiate into various phenotypes have the potential for cell therapy and tissue engineering. Human adipose tissue is an appropriate source of mesenchymal stem cells with wide differentiation potential for tissue engineering research. In this study isolated stem cells from hum...

متن کامل

Wharton’s Jelly-derived Mesenchymal Stem Cells can Differentiate into Hepatocyte-like Cells by HepG2 Cell Line Extract

Background: Wharton’s jelly is an unlimited source of stem cells that can be used in cell therapy and tissue engineering without any ethical concern. It has been revealed the cell-free extract could be effective to induce cell differentiation. The objective of this study was to induce Wharton’s jelly-derived mesenchymal stem cells (MSCs) into hepatocyte-like cells by premeabilization of the cel...

متن کامل

Differentiation of Mesenchymal Stem Cells Derived From Human Adipose Tissue into Cholinergic-like Cells: In Vitro Study

Introduction: Cholinergic-associated diseases currently constitute a significant cause of neurological and neurodegenerative disabilities.  As the drugs are not efficient in improving the suffered tissues, stem cell treatment is considered an effective strategy for substituting the lost cells. Methods: In the current study, we set out to investigate the differentiation properties of human adip...

متن کامل

Differentiation of Adipose-derived Stem Cells into Schwann Cell Phenotype in Comparison with Bone Marrow Stem Cells

Objective(s) Bone marrow is the traditional source of human multipotent mesenchymal stem cells (MSCs), but adipose tissue appears to be an alternative and more readily available source. In this study, rat adipose-derived stem cells (ADSCs) were induced to differentiate into Schwann-like cells and compared with rat bone marrow stem cells (BMSCs) for their Schwann-like cells differentiation pote...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2017  شماره 

صفحات  -

تاریخ انتشار 2017